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Ring-opening fluorination of 2,3-epoxy-alcohol is one of the
most important ways of introducing fluorine atom into function-
alized organic compounds. Catalytic ring-opening fluorination is
shown to give excellent yield (88%) by catalytic amount of scan-
dium triflate (Sc(OTf);) in DME.

The synthesis of organofluorine compounds has recently at-
tracted explosive interest in material and biological sciences be-
cause of the anomalous physical properties and less availability
of these compounds.! One of the simplest ways to obtain chiral
organofluorine compounds involves the Katsuki-Sharpless
asymmetric epoxidation® followed by ring-opening fluorination
leading to enantio-enriched fluorohydrine. Among various fluo-
rinating reagents, HF/amine complex such as HF/pyridine® can
be used for epoxide ring-opening fluorination. We have already
reported the combined use of stoichiometric amounts of Lewis
acidic metal fluoride salts and ammonium hydrogen fluoride
for ring-opening fluorination of epoxyalcohols (Scheme 1).4
The reaction proceeded in good yield particularly by the use
of HfF,, although in stoichiometric amount. We herein report
the development of catalytic ring-opening fluorination of epoxy-
alcohols by hybrid reagent of catalytic amount of scandium tri-
flate (Sc(OTf);) and ammonium hydrogen fluoride.
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Scheme 1.

When MF,; was used in catalytic amount (30mol %)
(Scheme 1), the reaction did not proceed at room temperature.
In order to find out the active species of fluorination,
YFVTNMR analysis of the mixture of TiF; and H,F3NBuy
was carried out. The 1:1 mixture of TiF,; and H,F;NBuy in
THF’ showed two broad singlets at room temperature. When
the solution was cooled to —80 °C, the signals split to 5 signals;
75 ppm (39%), 100 ppm (14%), 107 ppm (36%), 184 ppm (4%),
188 ppm (6%). In sharp contrast to 1:1 mixture, 0.15:1 mixture
of TiF4 and H,F;NBuy4 showed only one signal at 75 ppm even

—80°C. According to the report on '’FNMR of [TiFs]~ and
[TiFs]>~ species,®” the signal of 75 ppm corresponds to that of
[TiF¢]>~ and two sets of signals, (100, 184 ppm) and (107,
188 ppm) (relative intensity: ca. 4:1), are in good agreement with
[TiFs]~. One set with large intensity, could be assigned to
[TiFs(thf)] along with the other set corresponding to
[TiFs(H,0)]~.
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Figure 1. VTNMR (°F) of the mixture of TiF4:H,F3NBuy =
1:1 or 0.15:1 in THF.

It could be concluded that when TiF; and H,F;NBuy was
mixed in 1:1 ratio, there is an equilibrium between [TiFs]*~
and [TiFs]~. [TiFs]~ with one coordination site could act as
an active species. When a catalytic amount of TiF, and
H,F;NBuys were mixed in 0.15:1 ratio, only [TiFs]>~ with no co-
ordination site, was observed in the solution and hence the reac-
tion did not proceed at all (Figure 2).
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Figure 2. Active species of the ring opening fluorination.

With these information in hand, we focused on catalytic flu-
orination by metal triflate catalysts (M(OTTY),) by changing the
counter anion from fluorine to triflate. Triflate anion should leave
a coordination site available for the epoxyalcohols, because of
less nucleophilicity and hence weakly coordinative ability.
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First of all, ring-opening fluorination of trans-epoxyalcohol
was examined with 30 mol % of Hf(OTf), in several solutions as
compared with HfF, in H,F;NBuy4 (200 mol % each) conditions.
Sc(OTf); was also examined in view of a similar ionic radii (Hf:
0.78 A, Sc: 0.75 A) (Table 1). When Hf(OTf)4 was used, the flu-
orinated product was obtained in poor to fair yield (Entries 1-4).
On the other hand, when Sc(OTf); was used, the fluorinated
product was obtained in good yield. However, in dichlorome-
thane, starting epoxyalcohol was almost consumed but the fluo-
rohydrin was obtained in low yield and non-fluorinated by-prod-
ucts were mainly formed. It could be considered that high Lewis
acidity in dichloromethane led to decomposition of the starting
epoxyalcohol (Entries 7, 8). The reactions in THF (Entries 5
and 6), acetonitrile (Entries 9 and 10) and DME (Entry 11) gave
good yields. Among all the solvents investigated, DME was the
best to give 80% yield. Each of the reaction shows C-3 regiose-
lectivity and the ratio of C-2 vs C-3 fluorination is about 35 to 65.
Other metal triflates such as Yb(OTf); (Entry 12), Y(OTf)3 (En-
try 13), and La(OTf)3 (Entry 14) gave the fluorinated product on-
ly in trace amount.

The 2F and 3F products showed only one "FNMR peak,
which are the same as previously reported.* Therefore, it could
be suggested that this reaction proceeds via complete
inversion process.

With this success in fluorination of 2,3-epoxyalcohol,
5-methyl-2,3-epoxyhex-5-en-1-ol, the synthetic intermediate

Table 1. Ring opening fluorination by 30 mol % M(OTY), in
various solvent systems

HfﬂF%’\ﬁu‘t 1.1 ec:uiv.) OH F
h (30 mol %, =
RA?/\ OH = :t. : RJ\;AOH * BT TOH
oF OH 3¢
Entry M(OTY), Solvent R Time (h) % yield 2F + 3F)* 2F:3F*
1 Hf(OTf), THF n-Pr 2 0 —
2b CH,Cl, 27 5 —
3¢ CH;CN 4 43 26:74
4 DME i-Pr 4 33 51:49
5 Sc(OTf)s THF  n-Pr 24 59 30:70
6 i-Pr 4 47 40:60
7 CH,Cl, n-Pr 96 20 22:78
8 i-Pr 4 8 13:87
9 CH;CN n-Pr 4 74 2575
10 i-Pr 4 71 36:64
11 DME i-Pr 4 80 37:63
12 Yb(OTf); DME i-Pr 4 trace —
13 Y(OTf)3 4 trace —
14 La(OTf); 4 trace —

“Determined by '"FNMR using BTF as an internal standard.
"The reaction was carried out at —20-0°C.
“The reaction was carried out at 0 °C.

HoF3NBuy (1.1 equiv.) OH F
o Sc(0Tf)3 (30 mol% MA =
MOH wﬁ = OH + OH

DME ,
88% yield (2F+3F) F oo OH 3¢

!

Fluorinated Vitamin D3 analog

Scheme 2.
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for fluorinated 19-nor-vitamin D analogue,® could be fluorinated
in good yield (88%) when using 30 mol % of Sc(OTf); and DME
(Scheme 2).

In summary, Sc(OTf); could act as an effective catalyst in
ring opening fluorination of 2,3-epoxyalcohol by ammonium hy-
drogen fluoride. Further investigation of the regioselective ring-
opening fluorination of epoxyalcohols is in progress.
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